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NATIONAL ADVISORY COMMITTEE FOE AERONAUTICS 

TECHNICAL NOTE 2^32 

TRANSFOEMATIONS OF THE HODOGRAPH FLOW EQUATION AND THE 

INTRODUCTION OF WO GENERALIZED POTENTIAL FUNCTIONS 

By Luigi Croccol 

SUMMAKY 

It has been shown that the holograph equations of motion can he 
derived in a symmetrical form by the choice of the velocity and the mass 
velocity as independent variables. The equations obtained by the use 
of the velocity potential, the stream function, or their transforms as 
the unknown function are of the same general form and therefore can be 
treated in the same manner. 

Particular sets of solutions have been studied independently of the 
gas law adopted and some properties of the series obtained by means of 
these sets have been discussed. Approximate gas laws for which the 
solutions of the hodograph equations can be easily found have been 
briefly discussed. 

The equations have been further transformed so as to have as 
independent variables the complex velocity and the complex mass velocity. 
Two new generalized potential functions can then be introduced that 
satisfy very compact equations. From these functions, all the 
quantities concerned with the representation of the motion can be 
derived by means of formulas independent of the gas law adopted. By 
means of the generalized potential functions some developments have been 
performed with the approximate Chaplygin-Yon Karman-Tsien law. 

An approximate transonic method has also been suggested. 

INTRODUCTION 

From a purely mathematical point of view, the ordinary hodograph 
equations for the stream function or for the velocity-potential function 
and the equations relating them to the physical coordinates are 
sufficient for the study of two-dimensional isentropic flows. However, 
from a more physical point of view they are not very elegant because of 
their lack of symmetry in contrast with the symmetry of the corresponding 
relations for the incompressible case. 

1At present at Guggenheim Jet Propulsion Center, School of 
Engineering, Princeton University, Princeton, New Jersey. 
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Now, the equations that define the Telocity potential 0 and the 
stream function -»Jr are 

0n = ° 

08 -v 

*s = 0 

*n = ^ w = m(w) 

(1) 

y 

where the subscripts denote the differential quotients with respect to 
the element of streamline ds or the element of normal dn, obtained 
from ds by a counter—clockwise rotation of 90°,  and w, p(w), and 
p = p(0) represent, respectively, the velocity, density, and stagnation 
density. Equations (l), which are symmetrical with respect to ds and dn 
if p = p ,  conserve their property of symmetry for variable p if the 

mass velocity m is considered in some way the counterpart of w. If 
the hodograph equations for 0 and ^ (or for other functions) can he 
expressed so as to make w and m (instead of the relation connecting 
them) appear explicitly, the equations will then have a symmetrical 
form that can he interesting not only from a formal point of view but 
also from the fact that it can give rise to many possible developments, 
some of which are illustrated in the present paper. In particular, it 
is possible to choose as new independent variables the complex velocity 
and mass velocity and to introduce a new generalized potential function 
satisfying a very compact equation from which 0 and tj their Legendre 
transforms  X and a>, and the physical coordinates x and y can be 
deduced by simple differentiations. 
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HODOGRAPH EQUATIONS 

The holograph equations can he directly deduced as follows. If N 
and S (fig. l) are the normal and the subnormal to the streamline 
and 9    is the direction of motion at a point P 

z = x + iy = eie(S + IN) 

dz = eie[dS - N d0 + i(dW + S d0)l 

(2a) 

= e 10 (ds + idn)=e^(M+if) (2b) 

where the defining equations (l) have been used in the last step. It 
follows from equations (2) that 

d0 = w(dS - N do) 

dt = m(dN + S do) 

(3) 

These are two relations hetween exact differentials and therefore can be 
written as 

dS = S^ dw + s0 do = i 0W dw + (i 0e + N) 

dW = Nm dm + We de = i Hrm dm + (i t0 - s) 

W 

/ 
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where m and w are two related variables so that the meaning of 
partial differentiation with respect to m is 

d_ = dw 5_ = _1_ ö_ 
am  dm öw  m' ow 

Since dS and dN are exact differentials, it follows from 
equations (k)  that 

S c) ■ §& *+"' 

and 

so that 

w%    = 

—• 

00 

> 

m2sm = -*0 
) 

But from equations  (4) 

(5) 

mN™ = +■ m _ 'm or mNw = \[r w " vw 

and 

wSv = fa or *Sm = 0] m 
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Hence, putting -*£  ^- equal to -j-~r   and performing the same 

transformation for m results in the following equations: 

-& = 
i M 

°    m4 
(6) 

which yield the well-known Chaplygin equations for 0 and i|r in a 
symmetrical form. 

It is seen from equations (h)  that 

S9 = rJe + N 

and 

% - i te ~ s 

and, with the aid of equations (5), 

Se = wWw + N 

and 

ö(wlf) 

öw 

-*9 =mSm + S = d(ms) am 
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These equations can "be satisfied by putting, respectively, 

S = Xw     ,     wN = Xe     ,     N = c%     ,     mS = -afc  (7) 

Equations  (7) are consistant if 

XQ = wctfc , -qg = mXw (8) 

a symmetrical system of equations in X and CD very similar to 
equations (6). 

From equations (3) and (7) it is deduced that 

d0 = w dXy. - XQ d9 = d(wXw - X) 

and 

dty = m dc% - o£ d0 = d(mDm - CD) 

Hence,  to within an unessential constant, 

0 = wX„ - X 

i|f = mco^ - CD 

(9) 

) 
•3 

which give 0 and i|r in terms of  X and CD.  The functions  X 
and CD are of course the Legendre transforms of 0 and t considered 
as functions of the physical coordinates. 

The functions  X and CD are distinguished by the fact that once a 
solution of equations (8) is known all the other functions concerning 

Equations (8) have already "been written in the present form "by 
Bateman (reference l). 

3Relations (9) already have been derived in the present form by 
Bateman and Peres (references 1 and 2). 
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the physical representation of motion can be derived by simple 
differentiations, 0 and t being obtained from equations (9) and z 
from equations (2) and (7). However,  if 0 and \|r are the known 
functions satisfying equations (6),  integrations are necessary to deduce 
the other quantities. After integration and determination of the 
constants so as to satisfy equation (8), the following explicit 
expressions for X and ca   are obtained from equations (9): 

X = -w Ji/Jr 
0(¥1,e)dfe)+ t Jer   0(v-0i)3in(e " 0i)d0i 

m- r   /e. 
i|f (vr:)01)cos(0 - 01)d0    + C    cos 0 + C2 sin 0 

CD = -m 
»1/m 

Hwi,0)d(-M +1 
m
l/      mr    je 

i|r(wr, 0^3^(0 - 01)d01 

1      T + —    /      0(wrJ,0-L)cos(0 - 0i)d01 - C^ sin 0 + C2 cos 

where    wr    and    0r    are two arbitrary reference quantities,  mr = m(wr), 

and    C"L    and    C2    are two arbitrary constants with no influence on    0 

and    i|f.    It is readily deduced with the aid of equations (2) and (7) 
that 

z  = e 10 0(y,0)     j *(v,e) 
w m 

Pl/w Pl/m 
-    / ^,9)4(1)  - i    / Mr(w1,0jd/-1. 

_ i     /'e   fe^ll + i ^r^l) 
0_ I       wr mr 

10 
e    -»-de    - (Cx + 1C2) 

By differentiation, 

dz = e = ei0(M 
w m/ 

which agrees with equation (2b). 
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Irom equations (6) and (8) the ho&ograph equations for the 
functions x> (*>, ty>  ancL i(r can he easily shown to he as follows: 

w —   m —I + ^—■ = 0 
dm V   ov/    de2 

m |- L &) + £% = 0 

(10a) 

(10h) 

i ö 

"a© m <i) 
l  öy 
m he2 

= o 

(10c) 

(lOd) 

Each of these equations reduces to the Laplace equation if m = w. 

The following equations are obtained from equations (10) with w 
as independent variable: 

a2x 
ow2 

(l_M2)w^+  (l-M2)^ = 
d2X 

ow Ö0£ 

V2 SS + fi + M2 - w i- log  (l - M2)lw |2 +  (l - M2)   ^2 - 0 
ow2       L <lw JJ     Ow      V S02 

öw2      L dw yJ      ÖV       V Ö92 

„2^1 +   (I + M
2
)WM+   (I_M

2
J^=0 

öw2 * Ö92 
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where M,  the Mach number, is defined hy (see equation (15)) 

1 _ M2 = A loS m 

d log w 

For every particular law m(w); that is, for every p(w), explicit 
equations are obtained. For M <1 (subsonic flow) the equations are of 
the elliptic type; for M > 1 (supersonic flow) the equations are of the 
hyperbolic type. 

The hodograph equations are frequently transformed so as to 

simplify the second-order terms. Thus, if for -r- > 0, 
aw 

dX. /dm dw\ 
" \w   m/ 

1/2 
w d(|J m d(ij =   (d log w d log m)1/2 

(ID 

then 

a ^■A = (£ d log m^A = (dmfyA 
dw/: \w2  d log w 

/     a/l\\lA       / \!A 
'* d(m)\  /     _ /w2 d log A ' 
\m d 

& 
2 d log wy 

(12) 

dm 
w 

= a2d\. 

dw 
m 

= — dX 
a2 

w d 
Km) ß2 IX, 

m di 
<wj 

1 

ß2 
dX, 
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and equations (10) are transformed into 

hx + tee-zh^1 (13a) 

.     d log ß 
*\\ + *00 + ^x -^ = ° (13*) 

d log a 
(13c) 

d log a 
°\X + ^0 - 2"\ —dX  = ° (13d) 

If    0 = ß0^, i|r = i i|r*, X = — X , and   o> = am*,, the equations 

for    0#,  t#,  X^., and   a)*    are readily shown to be 

<t*XX + 0*00 " M fad)   = ° 

**XX + **00 

**XX +  **00 

fci^B-.o 
'*"dX2 

aax2 

O-At j 

w 

For — < 0 analogous transformations can "be performed with the 
dw 

introduction of dX-,, a , and ß-^ defined in the same way as dX, a, 

and ß with -dm instead of dm. It is seen that X    represents some 
kind of an integral mean between log w and log m. Introducing the 
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sound velocity a 
- fc]1/S Lp/ and the Mach number M = £ leads to the 

8, 

following equations deduced from the Bernoulli equation dp + pw dw = 0; 

\ 
a2 + v2 Li££v = 0 

d log p 

d lQg P = _M2 

d log w 

d log m p 
 — = 1 - If 
d log v / 

(15) 

Then for    M < 1, 

dX - >/T M    d log w (16a) 

a-(jL 
\P0 

NÄT^W2 
(16b) 

ß=(7^ -M
2) 

1/2 
(16c) 

There is obtained a corresponding set of equations for dA,-^ a-j^ and ß-, 

when M > 1 by simply replacing 1 — M2 by M2 — 1. 

Approximate Methods 

It is seen from equations (13) that for constant a or ß these 
equations reduce to the Laplace equation. The first possibility is to 
be rejected for subsonic motion because, as equation (l6) shows, it 
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gives p as an increasing function of M. The second one is the well- 
known Earman—Tsien approximation (references 3 and h) 

= £o jZ7^> = ^ (17) 

where E is a constant. This equation reduces to the Chaplygin 
approximation for E = 1 (reference 5 a-ncL derived studies). 

Some considerations that will be useful in a subsequent section are 
now introduced. With the help of equations (12), equation (17) can he 
immediately integrated to obtain 

i- = KP- + H 
m Vw2 

£Q_ = E (l + Hw2) 

(18) 

where H is an arbitrary constant. Integrating now equation (l6a) and 
the Bernoulli equations (I5)j there follows, respectively, 

X = log w + Constant 

+ \fl + Hw2 

= -log/i + -i- 1 + Constant     (19a) 

and 

p         1   P0      _       ,     , — = + Constant 
o EH   D 

(19b) 
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From equations (15), for a real isentropic gas, 

P0_ 
„2 

'1 - 

max 

= 1 + JUlJ, M2 
y-± 

(20a) 

and 

dw2^2 

p 
PQ 1 
2 2 p a^1 

(20b) 

where w, max a.r 

il/2 

lr-iy 
Is the maximum velocity at zero density, 

aQ is the stagnation sound velocity, and y    Is the adiahatic index. 

A comparison "between equations (l8) and (20) Is shown in figure 2 
where the law, equation (l8), is represented "by a straight line. 
Chaplygin takes it as the tangent to the graph of equation (20) 

at w = 0, so that K = 1 and H = -~.     In the Karman-Tsien method^ 
aQ2 

the tangent is taken at w = w^ the speed at infinity, so that 

■a (x - „„2) .L.L^l *jf* (x _ KJ) K = P0 

EH 
2 

PQ  1 
2  2 

p» a«r 

H 
2(l a    \ M 

/ 

(21) 

^This method has been often presented in a less coherent form, as 
the constants of equations (l8) and (19) are determined for different 
conditions, though the formula for the correction of pressure coefficients 
is not affected by this incoherence. 
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Observe that for K j-  1 the value of p at w = 0 differs from the 
exact stagnation density pQ. It is easily seen that the value for KH 

in equations (21) gives the slope of the true isentropic relation at a 
point corresponding to the conditions at infinity, hut, as this depends 
only on the value of KH, it is seen also that Karman's condition is 
satisfied for every parallel to the tangent at w = w«, (fig. 2), that 

is, for the KH value given "by equation (21) hut for different values 
of K. This suggests the possibility of improving the mean approximation 
of the Karman—Tsien method "by an appropriate choice of K. The Karman— 
Tsien correction formula for the pressure coefficient has then to he 
modified. The modified formula, independent of the constant of 
integration in equation (19&), is then 

CL = 

which reduces to the Karman-Tsien correction formula for the value of K 
given by equation (21). Application of the modified formula with some 

2 

value of K between — (l - M«»2 ) and 1 gives values of Cp in 
2 ^ 2 

Poo 
tetter agreement with experimental values. 

For supersonic motion the hodograph equations reduce to the 
simplest hyperbolic equation (wave equation) for ct^ = Constant 

or ß]_ = Constant, with c^ and ß±    given by equations (12) with -dm 

instead of dm or by equation (16) with M2 - 1 in place of 1 - M2. 
The second possibility is now to be rejected because the resulting value 
of p increases with M. The first possibility gives 

2  /dm2 >1/a.^ji?^i.^ 
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that is, after integration 

m2=Kl (Hl-v2) 

A-*(%-: 
P0       ^ 

v2- VW 
2        2 Vo    +  P' 

The constants    Ej_    and    H^    can he determined so as to satisfy Karman's 

condition: 

2 
E1H1 = — a«^ 

Po2 

H,   = 
a^Moo^ 

1      Mm
2-1 

With ax = Constant, equations (13c) and (13d) (modified for M > 1) 
reduce to the simple wave equation. The general solution can therefore 
be represented by, for instance, 

x=f(M.±e) (22) 

5Peres has already indicated a law of this kind (reference 2). 
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Other laws for which the hodograph equations reduce to the Laplace 
equation for M < 1 (or to the wave equations for M > l)  are imme- 
diately deduced from equations ,(lh),   (or from the corresponding equation 
for the supersonic case) as the laws which make one of the four quan- 
tities a, l/a,   ß}     and l/ß, (or those corresponding for M > l) linear 
in X (or in Xi). For the true isentropic gaa the curves of a, ß, 
l/a, and l/ß as functions of X are shown in figure 3. For w = 0, 
X = —00, and a = ß = 1 the Chaplygin and the Karman—Tsien approximations 
replace the true shape "by a horizontal line which can give an approx- 
imation not too had even for w = 0. Approximate laws for which 
equations (Ik)  reduce to the Laplace equation are represented "by 
arbitrary (and generally not horizontal) straight lines. It is seen 
that for X = —00 these lines diverge hopelessly from the true law. 
Hence these laws do not appear to be convenient for the approximate 
representation in a large range of velocity. Nevertheless they can 
possibly have application when the variations of velocity from a mean 
value (for instance, the value at infinity) are small. In this case it 
is possible to achieve a better approximation than with the Earman— 
Tsien method by taking as the approximate law the tangent to one of the 
curves of figure 3. The resulting approximate p,p curve will have a 
contact of second order with the real isentropic. 

For the supersonic case, a^}  ß]_, l/aq^ and l/ß-^ as functions 

of Xl3  are shown in figure k  for 7 = l.k.    An interesting possibility 

is given by the curve of OQ_, which can be well approximated by a 

straight line between M =• 2 and M = 10. Hence in this range the 
exact hodograph equation in X^, = a X differs very little from the 

simple wave equation in Xn  and 0. Therefore the general solution of 

the supersonic motion in the said range of M is approximately 

X = ± f(Xi + 9) 
al 

where a,  and X-,  are given by the true isentropic law. This 

approximation seems to be better than the approximation given by 
equation (22). 
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Exact Solutions of The Holograph Equations 

The power set.- Many studies have teen developed on two sets of 
particular solutions of the hodograph equation in 0 or t, the so- 
called power set and exponential set, characterized by the fact that 
for the incompressible case they reduce respectively to the natural 
powers of the logarithms of the complex velocity and those of the 
complex velocity itself. The symmetrical form of equations (10) makes 
it possible to present these solutions in a form that seems interesting. 

By the introduction (though it is not strictly necessary) of four 
auxiliary quantities ay, %  ^ and ty,  satisfying in the same order 
equations (10),  and some supplementary conditions, the four complex 
quantities 

F = X+ ia> 

F = x + iu> 

G = 0 + it 

and 

G = 0 + it 

can "be made to satisfy not only equations (10) in the same order hut 
also the relations 

^w = ^0 (23a) 

w*m = iFe (23b) 

^Gl/m = -±% (23c) 

and 

i Gl/v = -iG0 (23d) 
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corresponding to equations (6), (8), and the relations 

^ 

G = vF„ - F W 

G = mFm - F 

(2U) 

y 

corresponding to equations (9). Conversely F and F are given "by 
formulas corresponding to those written in section entitled "Hodograph 
Equations" for X and as: 

F = -^w / G(w,9)d(i)  + —    /      G(wr,01)sin(9 - 01)d91 
Jl/wr 

W      vr Jer 

^ ,/e, 
G(wrJ01)cos(0 - 0i)d0i (25) 

and a similar equation for F with m and w, G and G interchanged. 

The quantities X J ^ ^ an(3- ^ can be determined so that they reduce 
to  X, CD,  </),   and \|r for the incompressible case m = w; hence the 
equations 

F± = F± = X£ + ia^ 

and 

G, = G± = ^ + it± 
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satisfy the Laplace equations 

and 

/SF± =  0 

£G±  = 0 

where A =  2  + 2—j to which equations (10) reduce when m = w. 
\        d(log w)2  Ö02/ 

An operator (( )) is now defined as that which, when applied to 
/     vh 
flog — j  (wr "being an arbitrary reference velocity), transforms it 

into 

-^j-!/>r?rr- •■—> 
(26a) 

for h = 1, 2, . . ., the integration "being repeated h times; then, the 
indication of the lower limit of integration "being omitted for brevity,° 

^ w - VvCmi <*>/£ "2 d^ • • •=Ml(ii) (2&) 

(log sf)j. h. J^ n ^y^i ^ 4(i).... h!I(i,i) (a6d) 

^Formulas (26c) and (26d) could preferably be written as operations 

on powers of log -&-   and log iZ5L and are different from the 
1/V 1/m ' r ' r 

operations given by equations (26a) and (26b) on powers of -lo« -E- 
w r 

and -log —. 
mr 
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From these equations there is deduced 

m 3w Zh(v>m)  = Ih-l(m^w) 

> 

m d ///■ 

<M\V l^t))-i^kt)) 
(27) 

and the analogous equations obtained by interchanging w and m, and/or 
by changing w into l/w and m into l/m. 

It is then easily verified that, with IQ = 1, each of the following 

functions 

F = 

F = 

G = 

G = 

((U? * «)n)J 

y 

(28) 

7 is a solution of the corresponding equation,' the signs having been 
selected so as to satisfy also equations (23). The choice of the upper 
or lower sign does not affect the values of 0, ty,  X, and a) derived 
from equations (28) so that for the solution of the flow problem it is 

7, 'This kind of solution has been first discovered by Bergman (see 
for instance reference 6) and by Bers and Gelbart (reference 7). The 
present form is new and more symmetrical. 
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sufficient to retain, for instance, only the upper one;8 nevertheless in 
some cases it can "be useful to consider solutions with "both signs. 

The solution represented "by the values, equations (28), of G 
and S does not coincide with the one corresponding to the values, 
equations (28), of F and F for it differs from the values of G 
and ff derived from F and F" by means of equations (2*0. This can 
be shown as follows: From the recurrence formula, which is easy to 
verify, 

*>M ~Si^M - J1/mr "1 ik)J1K s <te)fw^> 
w2 "1 

and from the values, directly deduced with IQ = 1, 

x      m u        J-lm v/  mr 

and 

There is deduced with the aid of equations  (27) 

[l _ v -yih(w,m) = Ih(v,m) - I I^fov) 

I     fii -41-11 m'w 

(29) 

and the analogous relations obtained after interchanging the variables. 

"S 
In this case for m = v the four solutions, equations (28), reduce 

(to within a multiplicative constant) to /log 2L _ 1QY,  that is to the 

power set for the incompressible case. 
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Application of equations (2^) to equations (20) yields the 
following equation: 

-G= 1 

M-l>a(((log£±ie)n))+<-l)*§(^ 

n /Wr _ 5r 
2 K  wrj 

mr 
m 

and a similar equation for -G, if w is interchanged with m, with 
the ± sign. This G- differs from the elementary solution, 
equations (28), although it is a linear combination of such elementary 
solutions, a fact holding also for the incompressible case.  In that 
case, however, the expression for G contains only an elementary 
solution with the upper sign if F is so, for then wr = m^. 

The physical coordinates are easily deduced; for by equations (7) 

S + iN = Fw = i F9 

S + IN = Fm  = - F m  w ö 

(30) 

where S and N are auxiliary quantities connected with x a^cL ^ 
by relations similar to equations (7). Hence 

z = elö(S + iff) 

with 

-^(((^-»rj 
log -2- + 10 

in-l\ 
Ky 
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»-!(?.- 5.) - ^|((-B i * le/^j - (((iog i ± „)^)j 

It is now again verified that, as already observed, the choice of 
the sign does not affect the results concerning the values of 0, t, 
and z "but only the introduced auxiliary functions. In subsequent 
work, therefore, only the upper sign is retained. 

Linear combinations, and in some cases infinite series of the 
elementary solutions, equations (28), are still solutions of the 
corresponding equations. 

Infinite series in the power set.- If, say, F is given hy an 
infinite series, then developing and inverting the order of summations 
gives 

    \n—h 

n= =0       \\\        wr ///      n=0 h=0 (n-h)! 

h=0 n=h(n-h)'- h=0    ü UhA=-i8 

where 

0 

represents the function corresponding to this power series. 

Now, independently of the convergence of this power series it is 
readily verified by differentiation, that equation (31), whenever it 
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converges, is a solution of the equation in F (see equation (10a)) 
Similarly when it converges, the series 

*-£ih(»,v)(ä^) 
h=o        Ur/! 

(32) 
£=-ie 

obtained from equation (31)^7 simply interchanging w and m ^ 
satisfies the equation in F (see equations (lOh)). For G and G 
there are the analogous solutions 

(33) 

Now, let G and G he deduced from F and F hy means of 
equations (2*0, with the help of equation (29). There results the 
following expression for G: 

-G 
■£TQ   

2k\mw :k \        %• d£j dP tr-19 

^L_   2k+l\mV    d^k+l  \        wr dl/ 
§=-ie 

and a similar expression for G after w and m, wr and HL, have 

"been interchanged. 

The values of 0 and t  deduced from these expressions for G 
and &   are the same as those derived from equations (33) if 

B( 0 = -A(- b;    2"ymr    wry    d^    + 2 ^mr wry  d£ 
D. 
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The formula for F can he written in a different form: 

F = 21 i\(w,m) 
h=0 

h(h)(ö) + iaP
(h^(e) 

with 

and 

It follows that 

A(-ifl) = ai(0) + ia (0) 

B(i0) = hx(0) + ih2(0) 

G = 
h=0 

(-i)\(K±) h1(h)(0) + ib2
(h>(0) 

with 

and 

^(0) =^(0) -^a2«(0) 

M0) = -a2(
fl) +^ai,(e) 

There are similar equations for F and a. 
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Hence for    w = wr 

\ 
xr = E-LC©) 

%&)--*'< 
9) 

(3*0 

%■ = ap(0) 

Ms = an '(e) 

y 

so that A and all the solutions of equations (3l) and (32) are 
determined by the values of X and its radial derivative on the 
circle w = w  of the holograph plane or by the corresponding values 

for CD. Similar statements hold for B, $,   and \|r and solutions of 
equations (33). Hence the solutions written depend upon two arbitrary 
functions and, in their region of convergence, represent the general 
solution of the holograph equations. Naturally they do not give any 
indication of the behaviour of the corresponding solutions at w = 0; 

for as m-» v-> 0, (ijj-^. °°  as  |log v\h    so that the origin is 

certainly outside the region of convergence. 

In fact, if the solutions must be regular at w = 0, only one of 
the functions a(0)  and b(0)  can be chosen arbitrarily, and other 
representations of the solutions are needed to determine the other. The 
region of convergence of the series, equations (31)., (32), and (33), 
depends on the form of A(£)  and B(£). However, a general idea of 
its shape can be given by making very general assumptions about these 
functions and m(w). 

Let r(e) be less than the distance in the £ -plane between the 
point -10 and the nearest singularity of A(£)  and let Amax(0) 
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"be the upper bound of |A(£ )| on the circle with center 
radius r. Then the Cauchy's inequality gives 

-i0 and 

dhA(£ ) 

^ 
h (35) 

and a similar expression for B, with Bmq:x. and r-,  in place of 

Amax and r. For the Ihj if 

(I 1  dw  \ = /w\   =(^0) 
m d lo8 Wrnax  \m W  ^ p /max  a 

1  dm 
w d log w = |m-| 

max     max =^-M2,L- 

d(l/w) 
m d log ll/w) max 

(m\   = /p_\ 

\w/max  ^o/max 

d(l/m) w   ', 
d log (1/w) 

"*\ 

>  (36) 

max  vm    / max max 
= d 

y 

are the upper hounds of the written quantities "between w and wr, 

equations (26) give for even values of h 

Ih(w,m) I < j^r (^fSb |log ~ j 

Ch(^sj| < £T 
,h 

w 
k/cd"    log — 

w^ 

(37) 

and the same limitations  for    Ij1(mJw)     and    I^Cl/m^l/w) 
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For odd values of h the upper bounds for Ih(v,m) 

and  Ih(m,w)  are obtained from the corresponding expressions in 

l/2 l/2 
equations (37) by multiplying them with (a/b) '  and (b/a)   , 
respectively, and those for \lh(l/v,l/m)\     and  Jlh(l/m,l/w)|  are 

obtained by multiplying the expressions in equations (37) by (c/d) / 
l/2 

and (d/c) ' ,  respectively. 

Consideration of the series (31) shows that the terms of the series 

2_   |l2k(w*m)| 
k=0 

d^A(0 
d£ 2k +11 fw^l 

£ = -10      k=0 

d2k+V ) 
d£ 2k+l 

£ = -10 

are less than the corresponding terms of the geometric series 

^(1 +1 |i°g £|) |: (^ h ^ 17 

which converges when the ratio is less than 1. 

Hence the series (31) and (as it may be deduced in the same way) 
(32) converge absolutely in the region 

(ab)V2 jlog _JL| < r(0) (38a) 

Similarly, the series (33) converge absolutely for 

(cd)1/2 (log ^| <ri(fl) (38b) 

Wow since ab and cd are functions of w and w,   and since r 

and r1 are quantities which increase with the distance from the 

singularities of A and B, the general shape of the region of 
convergence in the hodograph plane is a curved strip, which contains the 
circle w = w  and whose width will be a minimum when -10 is nearest 
to a singularity of A(£ )  or B(£)- 
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If a singularity lies on the imaginary axis, that is, if A(-i0) or 
B(i9), and their derivates have a singularity for some value of 0, the 
corresponding width of the region of convergence will be zero. This 
happens, for instance, when the reference velocity wr is the velocity 

at infinity of the flow round a body. 

An observation of some interest is that as, for plausible laws, 

p/pO ia °(!) for M = 1 then (ab)1/2 and (cd)1/2 (equations (36)) 

are o(jl - M2| 1'2j     or oNl - M^1'2)   (the larger of the two) for M 
and Mj, near 1.        \ ' 

Hence equations (38) show that for given A(£) and B(£) the 
width of the region of convergence is the greatest and the rapidity of 
convergence the best near the sonic line M = 1. Therefore it is 
believed that the solution represented by series (31), (32), and (33) 
may have applications in the solution of transonic problems, naturally 
in combination with other methods converging in the rest of the field 
of motion. 

Finally observe that the development of equation (31) can be 
handled differently so as to obtain a power series in 0: 

j. = Y_ iz^L <T_ nIanIn_h(w,m) 
h=0  h!  n=h 

which by use of equation (27) and similar expressions and with 

^f- 

kf2(w) 

f±(v)  = ^_ n!anIn(w,m) and fg(w) = XI n'o^I (m,w) becomes 
n=0 n=0 

»- X «E t L (B LX\\M .£ ;-W)2^ v 4. rm M„ L\ 
k=0  (2k)-  L am \ dw/J x    ^ZQ  (2k + 1)!  dm |_ dw\ dm/J 

Similarly, 

The functions F and F, whenever the series converge, satisfy the 
corresponding equations and the relations (23), as can be directly 
verified, with arbitrary fx and f2. Analogous solutions hold for G 

and G with 19 in place of -10, l/m and l/w in place of w and m, 
and two arbitrary functions g-^w) and g2(w). For real values 
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of fj_ and f2 the real and imaginary parts of F and H?    are 

obtained directly; so that the equation 

X + io) t^i=(^)]V> 

V (-JQ)2k+1    d[d/  di 
feö (2k + l)i      dv[_   dmV   dW 

fi(v) 

depends only on f]_(w); correspondingly, g,  and g2 become real and 

the equation 

+ 
00  ,  . 

»- Y. m 2k Jl  d 
^ (2k)i  ]m d(l/w) k=0 

"l  , d 1 
v  d(l/m)J • B±{v) 

(10)2k+l x   d   Jl  d 

fcö (2k + 1)1 
W d(l/m) m d(l/w)[_w d(l/m) 

1  d 
Si (w) 

depends only on g (w). 

The physical coordinates are then found "by means of equations (2) 
and (7) to "be 

z = x 
/ 

+ i7-e18   Z [ !:(- y] fi<"> 

tyüüÜLü 
f=ö (2k + 1)!  dm ]    dw _ - s(- sf] 'i« 



NACA TW 21+32 
31 

From x + to there follows by means of equation (9) an expression 
for 0 + ty which must coincide with the written one if 

gi(v) = (v h ~ tyiM 

or 

%(») = -w /7g1 d(l/w) 

From this coincidence the following interesting formulas can be deduced: 

|m d(l/w)[w d(l/m) V dw  /   \    dw  / L dm\ dw/J 

and 

w d(l/m) im d(l/w)Lw d(l/m)J |  (V 
d_ 
dw 1 = m d_ _ \  d_ 

dm   /  dw r fe(m yj 
which are easy to verify directly. 

The meaning of the written solution is readily found by observing 
that when the series converge, for 0=0, then x = f-,(w), 0 = g-,(w), 

df-^ 
03 = * = °' X = dw~~'  aJld    J = °>  30 that    fi = /* dw,   82 =/w <3bc,   and the; 

whole solution is determined when the "axial" law of distribution of 
velocity is given. 

Hence the solution, under a somewhat different and more explicit 
form, reduces to the one studied by Lighthill (reference 8) in his 
work on the transonic flow in symmetrical channels. As Lighthill 
observed the coefficients of the expansions become infinite at sonic 
speed (for then dm = 0), so that the series diverge in the transonic 
region. In this region, however, the solution can be found by following 
the Lighthill1s ingenious method, that is, inverting the series 
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giving it or the one giving ^ + 1^°I, since the coefficients of the 

inverted series are finite at sonic speed. The application of Lighthill1s 
method can he made easier by the present form of the solution. 

The exponential set.- If in equations (3l), (32), and (33) 

and 

B«)=4B<h)(£)-en? 

n 

with arbitrary    n, then the functions 

\ 

F = E^w^mje 
-in0 

F = En(m,w)e -in9 

ine 

in0 

(39) 

y 

with coefficients defined hy 

E_(v,m) = zL  n^Km) 
h=0 

En(m,v) = Yl   nhIh(mJw) 
h=0 

(ho) 
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and similar equations for the other En will be solutions of the 

corresponding equations (lO) and (23) which reduce, for m = w 

to (we~19/wrJ  (equations(10a), (lOb), (03a), and (23b)) and 

to (wre
l9/wj  (equations (10c), (lOd), (23c), and (23d)), 

that is, to the exponential set for the incompressible case. 

It is immediately verified by means of equation (37) that the 
series En converge for all values of w and wr for which a, b, c, 

and d are limited, that is, for which p and M are limited and not 
zero. For plausible gas laws this excludes only the values w = 0 
8111 w = wmax- 

It is therefore seen, and easily verified directly, that 
equations (kO)  and the two other equations for En are, in order, 

solutions of the ordinary differential equations 

L.L ¥B\ _ „a w —m 
dm\ dw 

d / &%i 

n%! = 0 (4ia) 

,2, mdwT ST   -n<bn = o (lab) 

1   d  E 
m d(l/w) jw 

d-0n 
d(l/m)_ 

d*n 

- n\ =  0 (lac) 

- n i|rn = 0 (lad) 

deduced from equations (lO) by taking x, a), 0, and i|r as the product 
of a sinusoidal factor in n0 and of the corresponding function X^ 
ü^i>  $TL>  

or \    of w« F°*" the normal isentropic law, equations (4l) 

become the known equations of the hypergeometric type and have been the 
object of the investigations of many authors.  (See, for instance, 
references 5, 6, 8, 9, 10, 11, and 12.) Equation (i+ld) has generally been 
Btudied with particular regard to those solutions that satisfy the 

condition that ^n/rf1    is unity at w = 0. 
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It is immediately verified that the solutions En do not satisfy 

this condition and that the corresponding conditions at w = wr are: 

(En),- = 1 

m ^ En(^m) 
vdSEnKv) 

1        d 11 
v d(l/m)    nVm^w. 

1     , d /l l\ 
m d(l/w)    nVv'in/ = n 

The symmetrical form of equations (kl)  allows some general 
relations to he easily derived.  Some of these relations, that may he 
useful for further developments, are now stated "briefly. 

The E  can he considered as the superposition of two independent 

solutions of equations (4l): 
X 

Cn(w,m) =2_ n
2kI? (w,m) 

k=0    ^ 

Sn(w,m) = 2_ 
n2k+ll2k+l(^m) 

k=0 

(te) 

^Solutions of the kind of E^ Cn,  and Sn were first introduced 

hy Bers and Gelbart, reference 7. 



NACA TN 2U32 35 

for which, the conditions at w = v*. are: 

(Cn)r = 1 

= 0 
i~n 
\dw yr 

(Sn)r = 0 

\   dw   /r  \   dm   /r 

They are connected "by relations similar to those connecting the 
exponentials and the hyperbolic cosine and sine: 

C!  = C -n   n 

B-*~-*n 

±n   n   n 

2Cn * En + E^ 

2Sn = En - E, -n 
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Cn(w,,m)Cn(m_,w) - Sn(wJ,m)Sn(m:>w) = 1 

En(w,m)E_n(m,w) + En(m,w)E^n(w,,m) = 2 

dCn(w,m) 
m —ü-  = nS (m,,w) 

dw 

m  —  = nCn(m,w) 

dEL.(w,m)     .   . 
m —a  = nE-,(m,w) 

dw 

Similar relations hold when w and m are replaced "by their inverse 
values. 

All the solutions of equations (41). can he represented by linear 
combinations of Cn and Sn,  tut these functions (as all the series 

in Ift) are not suited to give the behaviour of solutions near w = 0. 
Since this behaviour is very important for many physical applications, 
it is necessary to follow a different method of investigation: Let 

F = (Zne-iö)n 

E = ( Xne 
~  / ~ -±0) n 

and 

O - ( V) n 
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he solutions of the corresponding equations (lO) which reduce to the 
exponential set for the incompressible case. Then X n, X n Y n, 

and Yn
n are solutions of equations (4l). Now, if for negative values 

of n the last two must coincide with 0_^ and *   (such that, for 

instance, — = 1 at w = 0) and if for positive values of n the 

first two must coincide with the corresponding Xn and a^,   it is seen 

that Xn/w, Xn/m, mYn, and w?n must he equal to unity at w = 0. It 

is now shown that this is possible for all values of n except some 
exceptional values: Let 

* - ™ d log Xn Rn"m  dw"  

5 -v
dl°gln 

n       dm 

= 1 d log Yn 
n  w d(i/m) 

= 1 d log Y. 
d(l/w) 

T = — n R 

(h3) 

It is immediately seen from equations (23) that E_ must satisfy 
Eiccati's equation 

1 ... ^n  dm2 

n  dw dw2~En (W) 
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and that En, Tn, and Tn must satisfy the corresponding equations 

with m and w interchanged or inverted. Furthermore, these 
quantities are connected "by the following relations: 

~   1 En = -R- Kn 
(45a) 

~   1 T = — 
n  Tn 

(45b) 

nm — Env 
-n = nwü \n m (45c) 

It is deduced from equations (43) that 

*n 
— = exp 
w    * 

7W 

\w  m / 
dv (46a) 

n   „ — = exp 
m 

m/R. n 
v i dm m/ (46b) 

mY-, = exp 
:/, 

m 

m2 
(46c) 

wY = exp n 

'W w mT n 
v2 

dw (46d) 

so that these quantities are equal to unity and analytic at w = 0 if 
all the integrands are analytic there. It can he shown in fact that, 

m        P 
if    v ~ rr~    is an analytical function of    w   near    w = 0,  the integrands W   PQ 

of equations (46a) and (46b) are zero and analytic at w = 0 for all 
values of n except negative integral and half—integral values (for 
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only the negative integers if JL is m analytic function of w2); 

Iw -I ^^B f e^ti0ns <Wc> ^ (^) ^e zero and analytic 
?*+ * - ° f°r ^ Yalues of n, excePt Positive integral and half-: 
integral values greater than 1 (for only the positive integers greater 
than 1, if — is analytic in w2). 

These results reduce to the well-known results when the equation« 
are hypergeometric. In this case Lighthill (reference 8) has given ?he 
most complete discussion of the solutions of the equation in ^ Ld 

deduced important theorems, some of which may possibly te generalized 

poleTf'n'-6 r?£\rth0d'+.
It Can *Z  Seen that ^ -cfusiofoflhe pole at n - -1 for the equations in 0n and *  is a general 

property, which does not hold for the equations in ^ and %. 

equation*)^ V^ S°lutl°*s of ^uation (kk)   (and of the analogous 
equations) and the corresponding solutions of equations (2k)  are: 

Bn = a = T 1 = w - ll (47a) 

p « iie-10 = ve-i© (if7o) 

p = Xle-i* - me-i© (4?d) 

a - Yiew - i eie ( 

G = Yie
10 = ie

10 (Vff) 
-1-     w 
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It is seen from equations (24) that the values of G and G (hence 
of 0 and i|r) corresponding to equations (47a) and (k-Tb)  are 
identically zero. In fact, it is seen from equations (2) and (3) that 
this solution represents merely a displacement of the origin of the 
physical coordinates. Equations (hfe)  and (kff)  are more interesting 
as they coincide with the well-known Eingleb solution (reference 13). 
The corresponding values of F and F are determined "by equation (25) 
(and the analogous equations). Thus, 

F = -we 

F = -me 19 

V* 1 1 
5a d(1/wl) + Sw^T 

/ 1 m -i- ad/m,) + —^ 
c/l/% Vl *Wr. 

^ 

(48) 

plus a constant multiple of we' -19 an! me -19 The coefficients 

m of eie in these formulas, together with w ana m respective, 
represent two indepenaent solutions of equations (4la) ana (4lb) 

—1 + w an! —1 + m which generally for TL    =  1. The operators u.  -r- - dv —.  - . - ^ 

allow the aeauction of two inlepenaent solutions of the equations 
in 0  an! ty  from two inaepenaent solutions of the equations 

in Xn ana <%, suffer an exception for n = 1 as they proauce only 
one set of solutions; that is, l/m ana l/w, respectively; for when 
appliea to w ana m the result is zero. This exceptional case is 
explainea in the section entitled "A new set." When n = 1 

ana Ei = - equation (45c) "becomes inaeterminate, "but the corresponling 

value of -1 
can be leaucea from this relation as the limiting value 

for n -> 1 of the inleterminate expression. It follows from 
equation (44) that with the conlition Er = 1 at w = 0 n 

En = n 
m _ 2(n - 1) m1w1

2(n-1)aw1 + 0 -X,«] 
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Hence, it ia deduced that 

)V 

T. 
_        m /      mn   dwn 

11m   rm-vRn        JQ 

n —> 1 nwRn — m m 
w I      wj_ dm.]_ 

(49) 

and 

L-l = 
m 

0 
wj_ doin 

Similar expressions hold for    T^    and   Y_i.    Hence the equations 

P     pxa. 

fr-l)"1 = h = E Jo    -l don 

(T_i)   1 = +! = |    /     *! dWl 

(50) 

V 

represent the second solution of equations (IkLc) and (Ij-ld), independent 

of Yi = a and Yi = ^ and- reducing to zero at w = 0. The 

expressions ^e-10 and ^e-"10 represent a kind of motion between 

two parallel vails. These solutions could be directly obtained by 
inverting and exchanging the variables in equations (48) and 
putting vr = mp = 0. 
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If n-^oo, equation (kk)  shows that En
2 -* E^2 = äff-. Similarly 

dw^ 

the equations 

E 
2 _ 1 _ dw^ 

E„ dmc 

y 

T - cL(l/m2) 
T_«? " d(l/v2) 

(51) 

coincide with i/o1- and l/ß^ (equations (12)) and can he explicitly 
calculated "by equation (l6). Then equations (46) show that 

** = ^ = Y. "I =Y -1 = e^ 
—00 

(52) 

where \ = log v - / [l - (d log m/d log w)1/2] d log w coincides 

with the value deduced hy integrating the dX given hy equation (11) 

and determining the constant of integration so that — =1 at w = 0. 

~nX Hence eXJA is the subsonic asymptotic value of X^ o^, 0n, and tn 

for n-> oo. 
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The solutions of equations (kl)   just discussed are "bound to the 
solutions, equations (k2),  by simple relations. For instance, 

A 

nj—>= Cn(w,m)  + EnCwpJSnCw^m) 
X 

t"7ü~T = Cnlv'm-j " Tn(wr)Sn^£ 
n-'   „  lll\     ~ ,__ ,„ /l 1 

J 

(53) 

as can be verified by controlling the identity of the conditions 
at v = wr. Hence as w -> 0 and  |Cn|  and IS I—*,» 

lim Cn(v,m) 
v-»0 Sn(v,m) 

11m Sn(m,w) 
w-> 0 Cn(m_,w) 

= -^„(wp) 

1 1 
lim ^U^v 
w~>0  /i i\  v-* 0 

lim SnU->m/ 

Mm'w 2nlwJm/ 
Tn(vr) 

The following interesting expansions are deduced by applying 
equations (53) to the solutions in closed form obtained for n = +1 : 

w = •wrC-L(wJm) + DL,S-, (w,m) 

v/    -dd/vi) —i8l(w,m) 
L/ 1/-WV, 1 r 

(5>0 

^ 

(and the corresponding expansions with the variables interchanged or 
inverted). 
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Finally,  it should be observed that differentiating (for instance) 
equation (4la) with respect to w yields 

1 d_ 
m dw 

w 
d(l/m) \dw 

dX 
+ (»2 -1)^-0 

This equation is of the same general form as equations (kl)  with 
2 2 only one of the variables inverted and 1 — n  in place of n ; it can 

therefore be treated in the same way as equations (4l). 

Hence two particular solutions similar to equations (^2), 

c^£.^|>-***&') 

and 

I/» w w (1 
k=0 

1 

n2)  2I 
2k+lV: M 

can be defined through the integrals 1^ given by the formula (26) 

by simply replacing the present variables. For n2 >1 the second 
series is imaginary and must be divided by i to obtain a real 
solution. The general solution for d^/dw is given by a linear 

combination of these solutions, and the general solution for Xn is 

obtained by integrating and adding an approximate constant. Now, this 
must coincide with the one in terms of Cn(w_,m)  and Sn(w,m). It is 

then easily derived that 

w = 
mr 

Cn(m,w) + 
wr Sn(m,w) 
m n 
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» 
and 

S\/l-v^m'V>           ±    Sn(m,v) 

ß     V        n 

Analogous relations obtained "by interchanging and inverting the 
variables also hold. For n = 1 these relations give equations (^>k) 
as a particular case. 

Other interesting relations can be deduced in the same way. 

Infinite series in the exponential set.— The series in 0ne
—inö 

and ~tyne~in^ have been used (as series in ^e-    and me 

could be) by many authors in the case of the normal isentropic law 
(references 5,» 6, 9,  and 12). 

They seem to have their natural field of application in the 
problem of two—dimensional gas jets, as Chaplygin first showed in his 
classical memoir. 

The application to flows around bodies seems to be more 
difficult, especially for flows with circulation. The difficulty 
arises first from the presence in the hodograph plane of a Singularity 
at w = Woo and from the ensuing necessity of employing more than one 
series development in the exponential set with different sequences 
of n (as appears already in the incompressible case) with added 
eventual terms in other sets, and of insuring that the different series 
are the continuations of each other.10 This can be achieved (although 
in a not very simple way) by putting the condition of continuity of the 
solutions and of their derivatives on the the transition curves (often 
circles), as has been done by Tsien and Kuo (reference 12) and as the 
author himself has done in an unpublished work in a somewhat different 
way, but it is believed that the main obstacle to this method arises 
from the difficulty of insuring that the body will have a closed 
contour when a circulation is present. In fact if the so-called 
"natural" series (that is a series having the same coefficients as in 
a chosen incompressible case with circulation) is used in one part of 

l^This difficulty is avoided in the method by Bergman (reference 6), 
which uses a different type of expansion and uses the series in the 
exponential set only as eventual auxiliary series. 
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the holograph plane (so that a basic series from which the coefficients 
of the other series will "be deduced "by the foresaid method is obtained), 
the resulting body will he closed only in the limiting incompressible 
case. In a tentative method the author has tried to obtain the closing- 
up of the contour "by taking the coefficients of the "basic series as 
simple functions of Rn(wr) (or of the other quantities in equations (43), 

wr generally coinciding with wj containing an arbitrary parameter. 

These simple functions reduce to the coefficients of the "natural" 
series when,, for vanishing wr, En "becomes unity. The arbitrary 

parameter is then so determined that the contour closes up. However, 
"because of the necessity of using, to express this condition, different 
series connected "by intricate relations, this method seems to he very 

complicated.11 In the method studied "by the author, series of the kind 
given hy equations (31), (32), and (33) (that can he put in simple 
relation with series in the exponential set) could he used, especially 
for the condition in transonic and supersonic regions where the series 
in the exponential set cease to he useful. 

It is worthwhile to mention here that the demonstration of the 
convergence of the series in the exponential set (that Chaplygin first 
deduced in the hypergeometric case in a somewhat complicated way) can he 
ohtained very simply and under very wide assumptions for m(w) hy using 
the properties of the functions defined hy equations (^3)• Taking, for 

instance, the series in Xne_ln0 = (Xne^-9)
n, it is immediately seen 

that Xi >X00; for, hy equations (Vf) and (51), 

^ = (d log m/d log w)1/2 = (1 - M2)1/2 < 1 
El 

and 

log (X-L/XJ = r [1 - CRjfei)]* log w> 0 

llrEhe problem of the closed contour has heen solved in a very 
elegant way hy Lighthill (reference 8), who discovered a very simple 
development converging in all the field (subsonic and transonic) and 
gave the conditions for the closing-up of the flow behind the body. 
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Moreover, for plausible m(w), 

1  00 

and 

EM=(I_M2)V2P 
p0 

dB-, dB 
are decreasing functions of w, so that   < 0 and —- < 0. Taking 

dw dw B 

now a value of n greater than 1 it is immediately seen from 
equations (kh)  that if, for some value of w, Bn ^ E-,, 

then -*frn-Bl) >   ^ ,f      fi  ^ -*(»„-Bn) >Q> 
dw n   00 dw 

if one of the two conditions is verified for some value of w, then for 
decreasing w the value of Bn will diverge more and more from the 

value of E-|_ and of BwJ so that it cannot he equal to unity 

at w = 0. Hence, if En = 1 at w = 0, for other values of w, 
Eoo < En < El and from equations (h6)    X«, < Xn < X-^ 

The following limitations for ^ = Xn
n are found by use of 

equations (V7) and (52), for n > 1: 

e1^  <Xn< w
n 

Naturally, these limitations hold only for real values of B^ and X, 
hence for M 5 1. In the same way it is proved that, for n >1 

mn< ain< e1^ 

The analogous demonstration for 0n and \|r  requires the assumption 

dd/w2) 

d(l/m2) 

^ j.    m 2  d(l/w2) 
that T-oo =  — must be an increasing function of w. This does 
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not seem to tie too restrictive a condition, for T   must in any case 

"be unity at w = 0 and infinity at M = 1. According to this 
assumption it can "be directly verified that 

d_ 
dw 

1 + 

mw 

'd log m 

vd log wy 

vl/2 
m = —• 

1 + 

ur 

'd log m 

\&  log v) 

1/2 ri 2 dw 
d(l/ m2) 

dCl/v2) 
>0 

and 

m 
d 
dw 

m1 iv2 

m + Wy 

mj 

(m + v) 
1 - 

d(l/m2) 

dCl/v2) 
>0 

By integrating these inequalities between 0 and w it follows easily 
that 

m 
w f;^/;^M^rf; ml dvl 

the sign of equality holding only at w = 0. Hence equations (h9) 
and (51) show that, excluding w = 0, 1 < T_x < T _^   and the equation 

corresponding to (kk)  shows that T^, like T_ca,  is an increasing 

function of w. Now for -^1 < -1 from the equation in T^, "by a 

reasoning identical to that developed for Rn, it can "be proved 

that 1 < T_T < T _ < T_^ and that -    > Y_x > Y_^ > Y_^. Hence x m 

for    0n = Y_n~n    the following "bounds hold,   for    n > 1: 

m»<    * 
\m 

7m \n 
wl ^1/    < 0n < e' 

nX 
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Similarly,  for   i|rn 

iw \n 

elA < tn   < |    /      % dwx I    < w* 

The convergence of the Chaplygin (or other) series can be 
immediately demonstrated by means of these bonds. 

For negative integral (eventually half-integral) values of n, for 
the reasons discussed in the section entitled "The exponential set " the 
condition that E and T are unity at w = 0 is not sufficient to 
determine the solution. However, it is possible to give supplementary 
conditions, which are omitted for brevity, such that the resulting 
solutions of equations (kl)  may be used to construct series converging 
in all the subsonic hodograph field exterior to a given circle. 

A new set.- Here, only briefly mentioned, is a different set of 
solutions of equations (23) in closed form. It has been observed in 
the section entitled "The exponential set" that the solutions 0, 

and \|rx given by equations (50) cannot be derived from the solutions 

of the equations in Xn and <x>      for n2 = 1. 

Conversely, if for given G = 0ne-
in0  and G = tne~

lnÖ of the 

exponential set values of F and F are deduced by means of 
equation (25), or the analogous equation for ¥, the solutions obtained 
are still of the corresponding exponential set for all values of n 
but 1. 

n   this   Case.    Wri+.inrr   Inn+.pnrl    rvP      CL   —   tu   0 aiiu.      LT   = In this case, writing instead of G = 0, e-i0 and G = V e~10 the 

more general formulas 

e~19 f r        ,    *r*r 
G = ~^~(  /  wl ^1 + — 

and 



50 NACA TN 2432 

corresponding to equations (k&),  it follows from equation (25), 
with 0r = 0,  that 

F = -^we -ie 
Jl/Mfr    L     V1/W% 

ml wrmr ]      ie 
w2 ding + —s— I + -75- 

and 

F = -me' —10, 1        , wrmr I     10 
JÜ2 dw2 + —g— / + -Tj- 

are new solutions of the corresponding equations in (23), which are not 
included in any of the sets already discussed. 

Then if the variables are inverted and interchanged and the sign 

of 0 is changed, it is seen that 

m wl ^l 
10 
"2~ 

and 

G = w 
ml ^wl 

/ml 1_ Jl_\ 1  ] _ 10 

satisfy the corresponding equations in (23); hence the respective real 
and imaginary parts satisfy the equations for 0 and i . 

Wow applying again equation (25) to the last expressions, other 
solutions of the equations in F and ¥    are found, from which by 
changing again the variables new solutions G and ?$■ are found. Hence 
it is seen that the repeated application of the described process 
generates a new set of solutions F and F, and G and 'S-. 
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The first terms of the corresponding incompressible set of G-j, 

which can be easily obtained by repeated application of the formula to 
which equation (25) reduces for m = w 

Fi = -Y GiCv) d(i) 

where V = we  ) and successive inversion of Y, are 

V/2 

1 i   T 

27 l0g w^ 

Y 
IT 

i „  V  1 wr log — + - -75— 
wr  2 \Y^ 

1 
87 

Y /       Y 
log — 1 + log 

Wv, w„ 

1 Yc 

-1 
Wv 

THE GENERALIZED POTENTIAL FUNCTIONS 

• In the preceding sections, it has been shown that the symmetrical 
form, obtained by making the velocity and mass velocity (and not the 
connection between them) appear explicitly in the hodograph equations, 
gives rise to an interesting general treatment of these equations. It 
has been seen that the complex functions E and G, of which the real 
parts are x a^cL 0> are connected by symmetrical relations to the 

functions f* and G*, having co    and \jr as imaginary parts. In this 
section, it will be shown that all these complex functions can be 
deduced by simple differentiations from a unique function $, called 
the generalized potential function. 
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A second generalized potential function $ is also introduced, 
with interesting properties. 

Let the complex velocity and mass velocity be defined "by 

y = we -10 

W = m(w)e-ie = ^V 

(55) 

and observe that they are bound by the condition that their ratio 
W   p 
- = — must be real and equal to a prescribed function of w, or 
V  P0 
that v must be a prescribed function ß(W/V) of the relative 
density. When these conditions are satisfied, the two moduli of 
equations (55) will be connected by IWI = m(|Tl). Hence equations (55) 
can be written 

so that 

- <^>-19 

w = Si/Kl-19 

v   Vv/ 

w = ß(|) 

and 

m -Hvf) 
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It is now seen that if "W and V are not "bound "by the foresaid 
conditions and are independent, these relations can he used to define 
generalized complex values of ö(v",W), W(V,W), and m(Y,W) and there- 
fore of all the related quantities. Hence the equation 

o  d log m     d log P     d log (W/V) 
1 — w-  =   =1 =1 j—— 

d log v     d log w     d log fi(W/V) 
(56) 

defines a complex Mach number M = M(V/V) which, if the physical 
conditions concerning V and W are satisfied, reduces to the 
real M(P/PQ) and can■therefore he immediately deduced without the 
help of equation (56) "by simply replacing in the expression M(P/PQ) 

the real variahle P/PQ    hy the generally complex variable W/V. 

How the holograph equations, considered for complex values of the 
variables, can he transformed hy taking V and W as new independent 
variables. From equations (55)> 

öw 
.8-^ 

om 
-i0 dw 

dm 

ST 
= we"10 

M - 
ÖW 

e-i9 dm 
dw 

öm 
= e~19 

and 

1 =— = me 
he 
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so that 

m 
w vöV      dw cW/ 

W dm W ÖV + ÖW/        | 

ö ö ö 
i— = V—+W — 

00 oV ÖW 
y 

Hence equations (23a) and (23"b) "become 

(57) 

dm 
W(FV + ££%) =vfv +ww 

and 

v(sV?w)-wV 
+ wW 

where subscripts denote partial derivatives. These are satisfied if 

FV=FW 
(58a) 

v% dw    W 
(58h) 

or 

= dlogja y2 
v       d log w        w 

(58c) 
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The first of these equations can be satisfied if a function $ is 
introduced such that 

F =<5W 

\ 

F = $1 
>* 

(59) 

and the second will also he satisfied if $ is a solution of the 
equation 

V2$w = (1 - M2)w2<tww (60) 

where 1 -M  is the function of V/V defined by equation (56). 

The meaning of equations (59) and (60) iB the following. If 
a $(V,W)  satisfying equation (60) is known, and after $y and $w are 

calculated, the right values of V and W are introduced (that is, such 
that W/7 is real and IWI = m(|vl )), then 

X = B.P.(*W) 

CO = I-P-(*V) 

will he solutions of equations (8). 

Observe that if in equation (60) the two complex variables are 
replaced by the real variables 9    and w (and m(w)) by the inverse 
relations of equations (5T)J the resulting equation (in a complex $) 
remains unchanged by exchanging w and m. The functions F and F* ■ 
(and  X and a))  can be deduced by relations containing the derivatives 
of $  with respect to w, m, and 10. 
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Equations (23c) and (23d) can "be treated in the same way and the 
result is found that if $(l/V",l/W)  is a solution of 

1 a2$ . (1_M2) i Jf£ 

"2 '> tf 

(61) 

then the functions 

G = 

> 

G = 

• 

(62) 

will he, upon substitution of the right values of ¥ and V, solutions 
of equations (23c) and (23d), so that the functions 

0 = R.P.I 

and 

t = I.P. 

will he solutions of equations (6). 
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Naturally 0 and if    can also be related to $.  From equations (2k), 
with the help of equations (57) and (58), it follows that 

G = — $,„T + V*  ~ $„ = V^ — — + —, 

> 

w 2 d /®W  $V1 G = w$vw + T $ww " ®v = w 5wlT + -w 

(63) 

y 

Hence, comparison with equations (62) shows that to within an 
unessential constant. 

*   * V   W (6k) 

The physical coordinates are deduced "by the following relations 
which may he obtained from equations (30) "by use of equations (55), (57), 
and (58): 

N 

S + it = e"10 (1 $  + $ ) 

S + iN = e-iö(*w + !*J 

y 

(65) 
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After assigning to W and T their correct values, separating the real 
from the imaginary part, and using equations (2), it can he shown 
explicitly that 

z = $T7TI + — fv* VW 
_1_ 

2W w + v*w. ^ww-^ww] 

which can also he written 

z = - R.P. V|V ^7 + W Ö 
L*T 

5w + W + w I-p- T 57 + w Sw + x )> 
(66) 

By differentiating this equation, there can be deduced an 
expression of dz which must coincide with the expression (2), that is 

with 

dz - & + i £ (67) 

when d0 and «Mr are obtained by differentiating the expression 
derived from equations (63) 

0 + it R.P. ov\T" + ¥ V2 * «^ + TT + il.P. W Sw 
W (68) 

It can he shown that the agreement exists if $ is a solution of 
equation (60), and if W/V is real. It seems therefore that the 
Comparison of the values of z calculated directly from equation (66), 
or deduced hy integration of equation (67) (using equation (6ÖJ), may 
constitute an interesting check on the accuracy of approximate methods. 
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Observe that $ = c-[Y + c2W + C3VW is a particular solution of 

equation (60), the simple meaning of which is that c±    constitutes an 

additive constant of as and of -4, c2 the same for X and -$, 

and c^ (complex) represents a general displacement of the origin of 

the physical coordinates. 

Particular sets of solutions of equations (60) and (6l) are easily- 
deduced from the sets studied in the preceding sections by integrating 
the relations (59) and (62) and introducing the expressions of w, m, 
and 9    as functions of V and W. 

In the incompressible case, V = W, 1 - M2 = 1 and equations (60) 
and (6l) reduce to identities satisfied "by every function of Y. The 
■written relations reduce then to 

F±(V) = V(Y) 

%(V) = -Y2$i'(Y) = Y$±"(j)  - v(v) = v2 i- (iiUIl 
dV \ V J 

Zi(Y) = F±'(Y) = ^"(Y) = ei0(s + Iff) = w S-+J* 

If the solution corresponding to the incompressible flow around a 
given tody is known in the physical plane,  $j_(Y) can be deduced from 

these relations. The profile of the tody can, for instance, "be defined 
"by a relation S = P(W) "between the subnormal and the normal for t = 0 
(and by giving this value to the corresponding streamline). 

Hence for I.P.(G±) = 0, that is, for I.P.fv«^1*) = I.P.^-j/)  it 

follows that 

wS = R.P.tY^") = wpJil-P.^')] 
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The corresponding relation for the compressible case, which 
can be easily deduced from the preceding formulas, is 

"2 Ö fa . ^L7 = 0} for I.P. 
cW\V W 

R.P •(W*w + Y*w )=mp|l.P.(*v)] 

after the correct values for V and W are introduced. The function P 
■will be the same in both cases if the profile is unchanged. 

The equations (60) and (6l) are of the same general kind. It is 
possible to pass from the one to the other not only by a substitution 
like equation (6k)  but also by simply putting 

\ 
$ = V¥$* 

$ = yw 

(69) 

J 

since, as can be immediately verified, $* must satisfy equation (6l) 
and $*, equation (60).  The equations may be transformed in many vays 
by changing the two independent variables. One of these transformations 
is obtained by taking as new independent variables (K being a constant): 

1   1 5  V + w7K 

1 _ J^_ 

(70) 

J 
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The equation (6l) in $ (or $*) is thus transformed into 

*t, -if1" (1" M2) g=l*» " ^+ *m) (Y1) 

where the first factor of the right-hand side is a function of    W/V", 
hence of    T|/|,   since 

W =   11 + (TI/|) 

V      VE 1 - (TI/6) 

A similar transformation may he performed on equation (60) by 
putting |=V+V and TJ = V - W. 

Other interesting transformations are obtained by taking 
I = log V + e(w/V) and T| = 5(W/V) and choosing in different ways 
the functions  6 and Ö. In this case the variability of the 
T) variable can be restricted to the real field. Particular cases are 
obtained by taking, for instance, e = 0, e =  log (W/v), 
6 = 1 -M2 and 5 = w(W/v) (since d loS V  = —).    An important 

v       d log (v/w)  My 
case is the one for which I = A, — i0 and TJ = X,  where X is the 
same as in equation (ll) or equation (52); this is obtained by 

de          -1       .    d5      JL -y£ 
taking   =  ■.   ■ and   =  . If 

d log (v/W)   (l + VI - M2)      d log (V/W)    M2 

this transformation is performed, an equation in $* and f  (or one 
in 9    and $$)     is deduced that may be used to obtain directly 
solutions of the kind obtained by Bergman (reference 6) and 
Lighthill (reference 8). 

Finally, let equation (60) be written with the actual isentropic 
law. In this case 

1 

po 
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Hence, consideration of the observation following equation (56) and 
substitution of the resulting value of M(W/v) in equation (60), 
yields: 

Y2$ 
YY 7-1 (r -1 fW2<D W 

There is a corresponding equation for equation (6l). For real W/V the 

corresponding values of 1 — M^ are shown in figure 5 for some values 

W  P 
of 7 with — = — as abscissa. It is interesting to observe that 

T  p0 
if 7 is in the actual range for gases,   its value does not seem to 
affect to a great extent the shape of the curves, especially in the 

subsonic range. The factor 1 — M  is linear in V/V for 7=0 and 
in Y/W for 7=2; for other values of 7 in the actual range it is 
not far from a straight line in the subsonic range. 

p  W2 
The curve 7 = —1, that is 1 — Wr-  = — is also represented in 

V2 

the figure, and corresponds to Chaplygin's approximation. The Karman- 
p 

Tsien approximation corresponds to 1 — M2 = ^— where the constant K 

(see equations (17) and (2l)) is so chosen that at infinity (p = P^) 

1 - M2 will take the value 1 - M«,2 given by the true law. 

THE CHAPLYGIN-XABMAN-TSIEN CASE 

For the Chaplygin-Karman-Tsien approximation the right-hand side 
of equation (71) (or equation (69)) becomes zero so that the general 
solutions of equations (60) and (61) are 

0 = YW [f-jU) + f2(t|) 

\  = e-]_(|) + e2(Tj) 

(72) 

J 
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with e1}  e2, f]_, and f2 arbitrary functions of the variables | 

and r\    defined by equations (70) • The Yalue K = 1 corresponds to 

Po2 
Chaplygin1s approximation;    K = (l -M^2) —-,  to the Karman-Tsien 

P«, 

approximation.12 As it has "been observed in the section entitled 
"Approximate Methods" it can he convenient to chose K—values "between 
the two. 

The solutions (72) can he interpreted in two different ways. 
First they can he regarded as the exact solutions of the corresponding 
equations for a gas satisfying the ideal law (l8). 

With the use of equations (70) for  | and r\,  this law can he 
written U||T|| = -H; or for real W/Y, hence for real | /r\, 

M =M = Tff= -5 (73) 

This relation allows the expression of $ (and <&*)_ as the sum of two 
arbitrary" functions of £   and 1 or of r\    and TJ. 

In the second interpretation, equations (72) are considered as 
approximate solutions of the equations for the actual law of gases. In 
this case 

|"J-*-*-^-3E) m 

is no longer a constant, hut is a function of w. 

12As observed in footnote k  the actual presentation of this method 
is more coherent than the usual one, as the constants H and K of 
formula (l8) are here deduced for a single reference.condition; namely, 
the infinite point. 
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Naturally the last expression, and the relation (73),  do not 
restrict the independency of |  and TJ; as they must he used only 
after all the formal deductions from equations (72) of the following 
kind have heen performed. From equations (72) and the application of 
equations (59)^ 

¥    V 1  WS/K 1    2  WVE 2 ' 

and 

^$Y = ¥fl-v-fl' +f2"T-V 

- + 7- " 2fl ~ tfl' + 2f2 " 1*2* 

According to equation (6k),  the last expression coincides with -$; 
hence, hy equations (72), 

e1 = 2^ - 1^' 

e2 = 2f2 ~ Tlf2l 

From equations  {62), 

«       JJ i G = 0 + ii|r =   If!1* - fx'   + T)f2" - fr 

and 

ff-? + i*-i (£fi" - fi» - if2" + f2«) 
vE 
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so that 

+ iv^ = If," - fl. + ^=irr = gi(|) + ^ 
(75) 

S±    and eg teing two functlong reiated to f±    and f  "by the relations 

Si' = if-j/" 

> (16) 

82* = Tjf2' 

Wow, from equation (66) for real W/V (hence if V and W 
J 

the same ardent    ^   and 'f and^    the sa^eT^ent    0?f    *    ^ 

z  = ei9R, 
f2-Tlf2'    +|n(S   f   T))f2"l? 

+ ieiei.p 

P.je-iö[fl _ 6fi,   +1  |(6 + |i)fi„  + 

je^ - fifl.   + 1 6(fi . ,)fi.  + fg _ ^  _ 1 ^ _ ^f J 

= fx - lfx'   + \ |2fl»  + f f   ,   + 1    2f n  + 1 e2i0 
2    + £ 1 f2    + £ ^      H^ + f ") 

=   f n    - Sfl'+  I  *V   +  *= .t^l „2. 2-^2* + t^f2" + 1  ||,|(fl» + f2») 

(77) 
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This relation gives the physical coordinates as a function of the 

holograph coordinates w and 9    when | = 
i +  

1  eie 
w  m(w) V/KJ 

and i\  = 

law m(w)) 

le1^ are 
m(w) v/K_ 

Differentiating equation (77) yields 

introduced into it (with the assigned 

2 dz = lV"^ + H2f2"
,d1 + l6l»Kfl",d6 + f2mdTl) + (fl" + f2M) d,6J 

But dz is also given hy 'equation (2), which may he transformed in the 

following way 

2 dz = £ dri + i -4= ^ di= ■ % d(0 + i N/K» + T, d(0 - i m) 

or (see equation (75)) 

2 dz = E^'dt + ^«"CLTI + |h|(f1
m^ + V"«^ 

Hence, in accordance with the ohservation following equation (68) these 
two expressions for dz coincide only if  |£T||  is constant; that is 
if the law connecting S and t| is the law (73) (<*.£*»»  *f^ the 

same law as the one for which the equations (60) and (6l) admit the 
solutions (72). This is what is done in the Karman-Tsien method._ 11, 
on the contrary, the alternative interpretation of equation tf2)  is 
adopted, the coincidence ceases to exist. In this case, if the law 
connecting i    with TJ is the exact gas law, the error term hetween the 

two values of z, that is, 

Az |/W + f2" ") a Uni 

with I |T) I given hy equation frk),  may te regarded as a measure of the 
approximation of the approximate solution (72). 
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Observe that If the law (73) Is taken, hence if ?j" = -£, 

equation (75) shows that the general solution for 0 + iv/Ety is a 
function of I alone (containing the constant H), that is, it is a 
function of X - 10, where X    is given by equation (19), a result in 
accordance with the Chaplygin's monogeneity conditions. 

The expression (77) for z can he also written by using the 
functions g±    and g2 instead of f  and f  so that (see 

equation (76)), 

2z = J |2fl»«d6 + J ti2f2'-dTi + iniKfi" + f2») 

I <igl + / T) dg2 +   |TJ6|[ /   i dSl +   / i dg2) (78) 

If the law (73)  is assumed,  this equation reduces to 

2z = J   |(dgl + dg2)  +   J T1(dg1 + dg2) 

= J^z-EJ J*s (79) 

where    g(|)  = g1(|)  + g2(-^/|)    is the complex potential    0 + i\fij\|r   in 

this case.    In the incompressible case    H = 0, K = 1,  and    2z^   = /   I   dg 

r = V.    Hence Tsien's formula    z = zn-  - -   / |^- 
. . hj   \dzi/ 
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It is well-known that in the case of the flow round a "body Tsien's 
formula generates closed profiles only if circulation is absent. Many 
authors have studied extentions of the method to the case with 
circulation. Bers, Germain, and Leray (references 13 and 1*0 have 
followed a first way; Lin, Germain, and Gelbart (references 15, Ik, 
and 7) a second way; here a third way of constructing flows around 
closed profiles with circulation will he shown, "based on the subdivision 
of g(|) into gl(|) and ggU)- Let giC^/V^i)) = SlUAJ te tlie 

complex potential of an incompressible flow around a closed profile with 
a circulation T.    Then, since for | near  g^j 

(g/gjk = l + k[(S/!J - 3  + o fa/tj - i]J 

it follows that 

ft dgl = 2j6dz± = 0 

> 

/ dSl - 2^ i dZi —■pj/u - Sjazi =r 

(80) 

where the integrations are performed along any contour in the physical 
plane enclosing the profile, or around the corresponding contour in 
the I-plane enclosing gro (for simplicity, suppose v^ and g^ real). 
Now generally, 

= kg. ^/(l- Ijdzi = -f | k+1 (81) 

so that 

h dzi = Y (82) 

and the value of z given "by equation (79) for a compressible flow 
with £ = g-,  is not one-valued. But if g = g-[_ + g2 f°r the 

can he determined in such a way that the corresponding 

51 
a given g^ a ^ 

residual terms in equation (79) will compensate the value of the 
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last -written Integral. If the value of the circulation must remain 
unchanged, gg must he one-valued. This condition is ohtained very 

simply by taking, for instance. 

n /- .       .. A.   \n 
z. ^-^)J t^-BfJ^ 300 

The constant h can now he determined so as to obtain the said 
compensation. From the identity 

and from equation (8l) it follows that 

/'" «* - TTr  /r<n+r) ^ 

n + r 

Hence for real    I«,    and    H = —| TI   , 
CO   oo-7 

2MM 9 I dZi = rhlro    r 

I dg2 -zj idgg = -i(^-TlM)r 

If equation (79) must be one^valued,  the last quantity must be 
equal to (see equation (82)) 

H /K- -2TI r 
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Hence the equations 

2Tioo 
h =   

loo   -  \o 

and 

will satisfy the foresaid .condition of compensation. 

Observe now that the constant factor does not depend on n. Hence 
the condition is also satisfied if (im/^)n    is replaced "by P(loo/I)/P(l), 

vhere P is a polymonial in ijl    or an infinite series converging in 
all the domain of -variation of  |. Hence the function 

2TI  P(6«,/5) PI 0 + i^ = g(i) = gl(i) + i-^-^iry t^i W 

where P is an arbitrary function of I«,/!, is analytic in all its 

domain of variation, and will generate a flow around a closed profile 
with circulation V. 

Observe that by using equations (70) for real tm    and T^ the 

expression for the constant h is 

h = 
2T
)~ = £» V/K - 1 

S- - *». Po 
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For the Chaplygin or Karman-Tsien values of K   there is obtained, 
respectively, the very simple expressions, both vanishing in the 
incompressible case: 

7T-1 
PO 

and 

h = s/TT M 2 - 1 
00 

Particularly simple forms of equation (8^) are obtained by 
putting n = 0 or n = 1 in equation (83). For n=l an expression 
is obtained which coincides with what becomes the Lighthill solution 
for 7 = -1 (reference 8). 

The solution (Qk)  satisfies the condition of generating solutions 
around closed profiles with circulation when  |T) g| = Constant, and 
z is given by equation (79). Row if  |T| || is variable, as given by 
equation (74), and the equations (72) are considered as approximate 
solutions of the exact equations (60) and (6l), it is still possible to 
find solutions for which z, given by equation (78), is one-valued. If 
again g1(|/|oo) is the complex potential for the incompressible case, 

satisfying equations (80), with I^ in place of T, and if g (rf/^) 

is a function for which the expressions 

/ 
T) a&. 

^dg2 = r2 

(85) 

J 



72 NACA TN 2^32 

(analogous to equations (80)) hold where the integrations are performed 
in the r\    plane along the contour corresponding to the one of 
equations (80), then equation (82) and the analogous relation for g^ 

give 

2I\ 

= =00 

/^■? 
so that the sum 

/ i^+/H"2fe 2[T^+ — 

will "be zero for 

v   B_!I» rx (86) 
bOO 

Hence equation (78) will "be one—valued if g2 satisfies 

equation (85) with T2 given hy equation (86)., and 

0 + iJKV =  gx(l) + Sgd) 
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will represent, when the expressions (70) for I and T) are replaced 
"by the exact connection between m and w, an approximate solution of 
the exact equations with circulation 

r=r1 + r2 = ri(x-^) 

z being given by equation (78), and the error term 

Az ^/l/w+/H4N 

representing a measure of the approximation obtained. 

Clearly the simplest way of satisfying equations (85) and (86) is 

that of taking13 

g2(Tj) =_-£ g1(rj) 
3* 

Naturally this solution still holds when   |£TJ|     = Constant. 

An approximate solution for the transonic case is now noted, 
corresponding to the subsonic Karman-Tsien approximation.    If    M^ = 1, 
then the Karman-Tsien value (equation (21)) for   K    is zero.    The 

■"■•^If the Karman—Tsien value  (equation (21))  is adopted for    K, 
which makes the right-hand side of equation (71)  zero at infinity, then 

11*   1- \A - MM
2 2 

and    1 — 
T) 00 

s»   1 + NA-M^ S.    1 + s/T-uJ 
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corresponding curve of    1 — M2    in figure 5 reduces to the horizontal 

axis    1 - M2 = 0.    In this case the right-hand sides of equations (60) 
and (6l)  are zero,  and the respective solutions are 

$ = fx(¥) + Vf2(W) 

and 

I = | ex(W) + e2(W) 

where the arbitrary functions involved are hound by the relations 

-°1 = fl 

and 

f2 

Equations  (66) and (68) then give 

z  = i H.P.(Wf2')   + ![* + I.P.(f2)]   = f2*   + I I"P-J^(%- + f2") 

0 + iijr = -R.P.Cf-L1)   + il.P.f^- fx"  + W2f2"  + ¥f2'  - fj 

The approximate gas law corresponding to 1 — M = 0 is, by 
equation (56), m = Constant, therefore p0/p ig proportijpal to w. 

Actually m has a maximum at M = 1, and the distance between the 
streamlines reaches there a minimum. If the approximate law m = Constant 
were adopted, the distance between the streamlines would be unchanged 
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throughout the field of motion, and this would give rise to difficulties. 
But if the solution is considered as an approximate solution of the 
exact equations in the transonic field (even for M^^ 1 but near 1), 

then the exact law for m(w) can "be introduced in the solutions. This 
approximate transonic theory seems worthy of development. 

September 2J,  19^9 
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Figure 2.- Comparison of the Karman-Tsien and Chaplygin approximations 
with the true isentropic law. 
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Figure 3.- Variables a and ß as functions of X for isentropic gas. 
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